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Abstract

As Natural Language Processing (NLP)
has advanced and moved toward neural
network implementations, we needed a bet-
ter way to represent words that allowed
us to use them efficiently with neural net-
works and capture more information about
the relationships between words. With
those two qualities in mind, the word vec-
tor has emerged as the preferred format for
a large majority of NLP tasks.

1 Introduction

One of the first, and simplest, ways that re-
searchers first derived word vectors was by cre-
ating an adjacency matrix, whose dimensions
were V x V, where V is the number of words
in the vocabulary, and the entry in a cell is the
number of times that word V[i] has occurred
after word V[j]. These matrices tended to be
very sparse, since a large majority of words
will not ever co-occur in a corpus. More re-
cent approaches frequently take the neural net-
work approach, with the vector being generated
based on the nodes in the system, which pro-
duces dense vectors that do not have any filler
0’s for words with which it does not co-occur.
Since 2013, many researchers have extended or
modified the approach originally laid out by
(Mikolov et al., 2013). Pennington et al. (2014)
laid out their own framework for computing
dense word vectors, called GloVe, a year later.
These two styles of word vector continue to
dominate the NLP space today.

An extension of word vectors, document vec-
tors are a single vector that represents an entire
series of words. They are also frequently re-
ferred to as sentence vectors or paragraph vec-
tors, depending on the size of the documents
in a particular application. There have been

several ways of creating document vectors, in-
cluding summing its word vectors, taking a
weighted average of its word vectors, and even
concatenating vectors as in (Dai et al., 2015a).
Řeh̊uřek and Sojka (2010) created a module
called doc2vec that computes document vectors
from word2vec word vectors that is widely used
as a part of the GenSim Python package.

2 Related Works

Undoubtedly, (Mikolov et al., 2013) and (Pen-
nington et al., 2014) are the two foundational
methods for generating word vectors as we
use them today. They have enjoyed contin-
ued widespread use and serve as the basis for
many cutting edge NLP programs. Rong (2014)
provides a breakdown of the word2vec model
for researchers looking to generate their own
word vectors that is quite comprehensive and
explains the formula and methodology of the
origianl word2vec implementation in an easily
readable manner. There are some very notable
extensions and improvements on these method-
ologies, such as (Bojanowski et al., 2017), who
represents words as a bag of characters and
computes character level embeddings. They
showed that these embeddings allow the model
to work with words that it was not trained on,
and outperform other cutting edge methods.
Turney (2006b) propose ways to measure rela-
tional and attributional similarity among word
vectors for a variety of embedding types.

3 Implementation

This program was built using Python 3.7, this
time in the bulkier Spyder Anaconda environ-
ment, due to the large files needed for the
word2vec vectors. The program uses the Gen-
Sim package to load in the word vectors from a



format file provided by Google, and also makes
use of NumPy for mathematics involving the
vectors. The following sections describe, respec-
tively, the way in which the program made a
prediction to complete an analogy, and the way
in which it scored sentence similarity.

3.1 Analogies

The prediction function was passed 3 parame-
ters, a list of positive words, a list of negative
words, and an integer value result which deter-
mined how many predictions were returned.
Following from (Řeh̊uřek and Sojka, 2010),
words in the positive list were given a weight of
1, while those in the negative list were weighted
-1. A word vector vi was multiplied by its weight
wi and then from these new weighted vectors
an average was taken, and the resulting vector
was the prediction.∑size(positive[]+negative[])−1

i=0 (vi ∗ wi)

size(positive[] + negative[])− 1

When the program was run on the Google
analogy set, assuming that the first word is
A, the second B, the third C, and the fourth
D, words A and C were passed to predict() in
the positive field, and word B in the negative
field. Word D was not passed to the predict
function, but was kept to compare to the output
prediction.

3.2 Sentence Comparison

For this task, the program needed a way to
generate sentence vectors as well as a way to
score them. Firstly, to generate the vectors,
the program implemented a simplified version
of the methodology used by (Schmidt, 2019).
Stop-words (’the’, ’and’, ’a’, etc.) were given
a weight of .5, while other words were given
a weight of 2, then the mean of the weighted
word vectors was computed to come to the final
sentence vector.∑size(sentence[])−1

i=0 (vi ∗ wi)

size(sentence[])− 1

Once the sentence vectors were obtained,
they needed to be compared. To do this, the
cosine similarity was computed between the
two target sentence vectors, si and sj.

cos(x) =
si · sj

||si|| ∗ ||sj||

The result was normalized to 1, so it was
simply multiplied by 5 to fit the scale of the
examples.

4 Results

4.1 Analogies

There were a total of 19,545 analogy exam-
ples in the provided file. The computer was
only given a point for a correct answer if it
predicted the exact word that was expected.
Words having the same base but the incorrect
tense, or that used a plural instead of a sin-
gular, were counted as incorrect. Overall, the
program correctly completed 6,211 of the anal-
ogy phrases, or about 31.7%. The program
performed best in the plurality category, where
it correctly completed 972 out of 1332 (72.9%)
total analogy phrases. It performed worst on
the city/state examples where it completed 515
out of 2468 (20.86%) total analogy phrases.

4.2 Sentence Comparison

There were a total of 750 sentence pairs with a
human generated score to test the program on.
After the computer came up with its score, it
was compared to the human score and consid-
ered correct if it was within a margin of ±0.2
The program scored the sentence pairs correctly
299 out of 750 times, or 39.8%.

5 Conclusions

Between the two tasks, the computer had a
harder time with the analogy completion. This
is likely due to the fact that the sentence com-
parator uses simpler logic to compare the doc-
ument vectors. It is also likely that since the
program for the analogies had to average 3 vec-
tors instead of just two, there was less likely to
be error. Among the different analogy types,
the algorithm seemed to capture syntactic data
like the relationship between singular and plu-
ral forms or between different tenses of the
word better than semantic relationships such
as a country and its capital or a city and its
state. The semantic relationships certainly con-
stitute a deeper level of understanding to cap-
ture, and so are therefore difficult for the com-
puter. During the sentence task, even though
the algorithm only matched correctly matched
the human score 39% of the time, many of the
incorrect responses were within a small margin



(variance of 0.3 - 0.9) of the human given re-
sponse. This demonstrates that the program is
capturing a great deal of information from the
sentence vectors.

6 Further Work and Improvements

The weighting algorithm used in the sentence
task was a simple one, and many cutting edge
techniques have found that they can improve
results drastically through the use of more in
depth weighting techniques. Words that are not
stop words could be broken down into further
categories and weighted more or less depending
on importance to the sentence. Checks could be
made to identify words at the start of the sen-
tence, named entities, and important verbs that
could each receive a unique weight based on its
class. This would result in sentence vectors that
represent more of the most vital information
inside while filtering out less important words.
For the analogies task, a cosine similarity check
was considered as the prediction method, but
an averaging algorithm was used instead. It is
possible the the use of cosine similarity, or the
combination of cosine similarity and weighted
averaging could provide better results.
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